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Perturbation theory for the one-dimensional Schrodinger 
scattering problem 

V V Pupyshev 
Bogoliubov Theoretical Laboratory, Joint Instilute for Nuclear Research. 141980 Dubna, 
Russia 

Received 16 November 1994 

Absbact A permrbation theory is constmcled wilhin fhe framework of the linear form of the 
variable phase approach. This allows one to correctly take into account the potential tail which 
decreases more rapidly than the centrifugal tail. It is shown how one can use this theory for 
M analysis of the scattering problem in the low-energy limit and in the limit of large angular 
momenhlm. 

1. lntroduction 

Many versions [l-91 of perturbation theory for the one-dimensional SchrMinger scattering 
problem are, typically, constructed using iteration schemes [lo, 111; their constructions have 
some fundamental defects. The first defect is physical and mathematical incompleteness. 
Usually pexturbation theory is realized for investigating one function only (for example, the 
regular wavefunction L1-51) or one scattering characteristic (t-matrix [2-41, amplitude [51, 
phaseshift l6-991). Often a consauction is given only for zero angular momentum I and 
for a fixed total energy E .  Moreover, a condition guaranteeing the uniform convergence of 
iteration is not investigated in physically interesting limits ( I  + CO and E -+ 0) [2, 3,7,8] 
or is not derived at all as, for instance, in [9]. However, as was demonstrated by Peierls [6] 
without such a condition a perturbation theory may be incorrect and, therefore, its use makes 
no sense. Another defect of many perturbation theories is a lack of explicit and general 
estimates of the convergence rates of iterations. Usually the fact of convergence is proved 
by the derivation of a qualitative estimate 11-51 containing the, so-called, sufficiently large 
but unknown constant. More often the convergence is only demonstrated by a particular 
numerical example [7-91, or the estimate of its rate is derived for a model potential [6-8] 
having a very simple form. Finally, in modem scattering theory [3,4] there is no perturbation 
theory which is an effective method for a construction of the irregular wavefunction and 
which is an asymptotical method in the two limits l + w or E -+ 0. 

This paper aims to construct and analyse a new and complete perturbation theory which 
is free from the defects mentioned above. 

For completeness, we briefly describe the main stages of construction for a typical 
problem of nuclear physics. 

(a; - i(i + I ) X - ~  - v&) - V ( X )  + q2)  u:(x, 4) = o 

u:(x,  q)  --z sin (p  - vln2p - (21 + 1 =i= l)n/4 + S d q )  + Sr(q)) 

x E R+ (10) 

) X + O  (1b) = o(x'"+t/z)+'/2 

(IC) 
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with the parameters I ,  q E B’, the Coulomb potential V, 
obeying the sufficiently general condition 

signR/x and the potential V 

We use the system of units in which h = 2~ = 1 ,  and we ineoduce the dimensionless 
variable x = r/lRI and parameter q = klRl instead of the distance r and momentum k 
respectively. By definition, R kr = q x  and 
17 2 1/2kR = signR/Zq are the standard arguments of the Coulomb functions 4 and 
Gf [ I ,  121; U:, U; and & denote, respectively, the sought regular and irregular wavefunctions 
and the scattering phase generated by an interference between the Coulomb potential and 
the potential V in addition to the pure Coulomb phase &. Further, the index 1 is omitted 
where possible and if it is not specified, we assume that x E R’, p = q x ,  q = sign R/2q 
and that b denotes a certain fixed value of x .  

h z / 2 f i Z ~ 2 ~ e 2  is the Bohr radius, p 

2. Perturbation theory 

2.1.  Reformulation of problem ( I )  
To construct U: we apply the known linear form [13] (in fact it is equivalent to the method 
of varying constant coefficients [IO]) of the vm’able phase approach [7,8J. We develop this 
linear form by the addition of a new and simple way for constructing U;, which we now 
describe in more detail. 

Let c* and si be amplitude functions 171 (or ‘constant’ coefficients [lo]) obeying the 
Lagrange identities: 

(3 1 F ( A  ~ c * ( x .  4)  + G(P,  m s * ( x , q )  = 0. 

We are looking for U’ and then for U- in the form 

U%. 4)  = c*(& q ) F ( p .  rl )  + si@, q ) W ,  v). (4b) 
Using the method [lo, 131 based on the substitution of U* in the form of (4a) into ( la)  and 
subsequent use of the Wronskian relation [I21 

C ( P .  m F ( p ,  V )  - F ( P .  v ) ~ ~ G ( P .  II) = 
and the identity (3), we obtain the two sets of equations 

We complete them by introducing the corresponding boundary conditions 
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which ensure the asymptotics ( Ib )  of functions (44. In (5b) and (54  x + 0, p = tq and if 
V(x)G2(p,  q) c Z&, then xg = 0 and c-(O, q )  = 0, otherwise xo is an arbitrary but fixed 
parameter such that n 4 xo and xoq << 1 and then c-, s- are constructed as follows. 

Let V(x )G2(p ,  q) c Lfo,bl. Then, due to (5b) and (5c), I c- I-+ 00 as x + 0, while c+ 
and si are always finite. We find c+, s+ and s- at x = xo by solving problem (5) for c+ 
and s+ in the interval IO, xo].  and by using formula (5c) for s-. We then substitute these 
values into the Wronskian relation of problem (5) 

W ( x .  q )  = C+(X, q)s-(x,  q )  - c-(x, q)s+(x ,  q )  = 1 (Q) 

stated at x = no, and resolve the equation derived with respect to C-(XO, 4). Now, we use 
c-(xo, q )  and s- (xg ,  q )  to define the functions c- and s- at x < xo explicitly by (5c) and 
determine them at x 2 xo as a solution of equations ( 5 4  with the boundary conditions at 
x = x o .  

Using the described consbuction and the known theorems 1101 we prove that under 
condition (2) problems (5 )  are uniquely solvable in the Cf0,.&lass of functions and that 
the solutions satisfy (6a) and the relations 

IC*(X, d1 + IS*(X, q)l > 0 (6b)  

Ic-(x, q)1 < 00 x > 0. ( 6 4  

IC+(X, q)L IS*(X, 41 < CO 

Due to these facts and equations (5b), (5c) and (6), each of the functions 

a ( x ,  4 )  = -c+(X, q)c- (XI 4 )  - S+(X I q ) S -  ( x ,  4 )  

is unique and limited everywhere and, therefore, has the finite limit 

where A = 6, N*,  a. Using these properties of functions (7) the identity (64 and the known 
asymptotics of the Coulomb functions as x + CO, we show that the wavefunctions ( 4 4  will 
have the required asymptotics (IC) if we define the scattering phase 6(q )  and normalization 
factors N*(q)  and a(q) as the limits (8) of the relevant functions (7). 

It should be noted that each of the functions A = c*, S*, 6, N*,  CY has a remarkable 
property: 

if V ( x )  5 0 at x 2 b then A(x ,  q )  = A(b. q)  at x > b (9) 

and, therefore, has a clear physical meaning: c*(b, q )  and s*(b, q )  are the amplitudes with 
which F and G are contained at x = b in the wavefunctions (4b) non-normalized to the 
unit density of the flux as x + 03, and, as follows from (7)-(9), 6(b, q), N*(b, q )  and 
a@, q )  are the phase-shift 6(q)  and the normalization factors N*(q)  and a(q) if V = 0 at 
x 2 b .  

So, for constructing the solutions U* of the initial problem (1) by formulae (4).  one 
should solve problems<5) and then find the limit (8) fo; each function (7). However, this 
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is not the final stage of the reformulation. A further reformulation is prompted by the 
following obvious facts. First, problems (5) are very simple to solve numerically in some 
finite interval ( x  E [0, b]);  second, in this inner region V ( x )  is a more complicated function 
for use in the analytical study of equations (54 than it is in the outer region ( x  E [b ,  00)); 

finally, owing to (Z), V(b)  + 0 as b 4 00. 
From the above-mentioned facts it seems quite reasonable to calculate c* and si in 

the interval 10, b] numerically, to substitute the found values c*(b, q)  and s*(b, q) into 
equations (5a), and then to consbuct the solutions of the reformulated problems in the half- 
interval [b. m) analytically, namely as limits c * ( ~ )  and s*(,) of some sequences [c*('")}zd 
and (s"(" ' ) }~=~ uniformly converging in the CO-metric [ll] if x E [b. 001, m -+ 00 and b 
is large enough. Unfortunately, all the iterations of problems (5) rewritten in an integral 
form generate the sets of coupled Volterra-type equations I141 which are too complicated 
to be analysed. To operate with uncoupled equations we realize the above-mentioned 
reformulation as follows. 

Let c* and s* be known at some point x = b and be connected with new unknown 
functions y: and y,' by 

Here Bg is one of the three integrals used below and is determined by 

B1,,(b. x ,  9 )  = q-' l' V W  (GYCO, V)&J - F;'(P. v)&,z + NP. v ) G r ( ~ .  v ) b )  dt (lob) 

where n = 1,2,3,  p = rq and &,,,, is the Kronecker symbol [IZ]. By substituting (IO) 
we reduce equations (5a), with the boundary conditions shifted to the point x = b, to 
differential equations for $ given at x = b by 

$(b. 4 )  = ci@, q )  y$@,q)  =si@, 4) .  (11) 
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Here, for brevity, we use the notation 

(13b) Y, W )  (2.4) s $-')(x3 4)  + (xlPi(b, q ) l ~ ~ - ~ ) ( t ,  4)) 

and introduce the operator products % = 
assumed that & = $ 4 ~ )  and 

in a standard way: for any function z it is 

(xl%(b,q)lz(t',q)) = W b , x , q ) d r l  Pj(b,t',q)z(t',q)dt'. ( 1 3 ~ )  

According to (ll), (1%) and (13b), equations (13a) determining y:, y$ or y;, y; are 
connected with each other only by the constants, which are known by assumption. These 
constants are the values of c t ,  s+ or c - ,  s- at the point x = b. Such a simple connection, 
achieved due to a properly chosen substitution (lo), allows us to analyse all the solutions 
y,' of equations (13) independently from each other. 

2.2. iterations of problems (13) 

To investigate equations (13a) in the half-interval [b, CO) we introduce the iteration 
sequences {Y, * (m)  lm=-l defined recursively: y;(-') are the constants (12b), y,'" are the 
functions (13b), and then as the order of the index m increases (m = 1.2, . . .) we assume 
that y+(m) is the right-hand side of the relevant equation (13a) in which y' is replaced 
by y,?'). This definition together with (12b) and (13c) give us the two equivalent 
representations 

y:("')(x, 4 )  = $-')(b,  4)  + (xlPi(b, q)l$(m-i)(t, 4))  (W 
m m 

~ ~ ' " ' ( x ,  4) = $-l)(b, 4) x ( x l b ( b ,  q)le(t)) + $-')(b, 4 )  x(xI?@i(b,  q)le(t)) 
p=0 p=0  

(146) 

where m = 0. 1, . . . and 0 is the theta function [12], 

2.3. Analysis of convergence for iterations of problem (13) 

Theorem, Let x E [b, oo), b > 0 and the function (2)  be limited so that 

I i ( b , x )  c (1/2)In3 x E [b,oo). (15) 

Then, the sequences (y,f:m')~=P=-I uniformly converge in the CO-metric to the solutions y:l 
of the problems (13) and the differences ("')y; = y; - y$('") satisfy the inequalities 

I('")y;(x,q)l c D:[,m(b,x, q)coshu1(b ,x )u:"+~(b ,x ) / r (2m + 3) 
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Pmoj? By using (2) and the Klarsfeld bounds [15] 

F;(P, 7) IWp', v)Gt(p, v)l 4 (2ax'x/(U + 1))I" (17) 

where p' = qx' < p = q x ,  we derive from (lob) the auxiliary estimates 

IB.(b,x,q)l c I ( b , x )  n = 2 , 3 .  (18) 

Maximizing q- 'FZ and E*. E3 in (12d) with the help of (17) and (18) and then using (2), 
(16c) and the identity a,u = aJexp(21) we obtain 

IPi(b,x,q)l < (&,I ((U+ 1)/2~pZ)"2GZ@.v)+Si.2) &u(b ,x ) .  (19) 

Due to (12). (I&), (164 and (19) we have 

I(xl&(b, q)lO(f))l < v(b, x)w2-'(b, X ,  4). (20) 

To prove the relations 

I(xIf f(b.q)IW)l < 1': a,,U(b,f~)dh L'' atzu(b,iz)drz/'l'-' a,,u(b,tzJdtz, (21~)  

(21b) 

in thecaseofp= 1, weputz=8in(13c),maximizeq-'G(qtl,~)F(qrz,~)and Bs bythe 
right-hand sides of (17) and (18) and then use (2), (16c) and the identity a,u I a,I exp(2Z). 
Further, using the identities f! fy-lf~ we prove by induction the validity of (21) for 
any p = 2,3, . . .. 

Unfortunately, the functions (xlf!(b,  q)l€'(t)), p = 1,2, .  . ., cannot be estimated in 
an analogous way. In fact, according to (lob), (12 )  and (13c) the arguments p1 = qtl 
and p2 = qt2 of the Couloeb functions F(p1, q)  and G(p2, 7) which are comprised in 
the kernels of the operators T:, p = 1.2, . . .. do not satisfy the condition PI c p2 under 
which, for Iq-IFGI, inequality (17) holds. However, by virtue of the definitions f i  
and ep z q."-'%, the equalities f: = &f:-'@j, p = 1,2, .  . . are valid. With these 
definitions and the estimates (18)-(21) we have 

b b 

= u 2 p ( b ,  x ) /  r(2p + 1) 

I(xlf!(b, q)le(t))l c w(b, x ,  q )  1': bu(b, Ol(flf/-l(b, q ) la lW,  t'))l dt (224 

(226) c w(b,x,q)vZp(b,  x ) / r ( 2 p  4- I)  p = 1.2, .  . . . 

To prove the bounds 

I(xIqpP(b,q)a(b,q)le(t))l < ~ 2 - ' ( b , x , q ) ~ 2 P + 1 ( b , ~ ) / r ( 2 ~  +2) (23) 

in the case i = 1 we first maximize the function (tl&(b,q)lB(t')) in the identity 
ff(plO) by using (20) and then apply (21a); in the case i = 2 we use (19), 

(21b) and the identity fl,"4 &f,". 
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Using (14). (16b), (16c) and the obtained results (20)-(23) we show that 

(24) 

for any i = 1,2,  j = 1+6i ,1 ,  n = 0 ,  1, ... and m = - 1 ,  ..., n -  1 .  
Now, having all the necessary estimates, we immediately prove both the statements of 

the theorem. Inequalities 0 < v(b,  x )  < 1 (generated by (15) and ( 1 6 ~ ) )  and the estimates 
( 2 1 x 2 4 )  imply that in the half-interval [b, CO) the operators f i  and f i > i  are the contracting 
operators [I 11. Therefore, the sequences {y?tp=-, converge uniformly to the functions 
y: satisfying (12a) and (13a). Due to these facts we can put n = 00 and yf@) = y: in 
(24) in order to obtain (16), use the known power expansions 1121 of the hyperbolic cosine 
and, thus, complete the proof. 

2.4. Iterations and estimatesforpmblems (1) and (5) 

Let problem (5) or ( 1 3 )  be solved in the interval [O, b] where b is such that (15) is fulfilled 
and the sequences {c*(m)jE=o and (s*(m)]~=o are defined as 

if x < b, and 

if b < x < 00. Here m = 0. 1, . . ., B3 is the integral (lob), y;(-') are the constants (126) 
and yfcm) are the functions (14). These sequences converge uniformly in the whole semi- 
axis R+ to the solutions of problems (5). The functions c*(O) and si(o), due to (126) and (25), 
have property (9) and are the exact solutions of these problems if the potential V is cut off 
at the point x = b.  Due to the above-mentioned properties of sequences (25) two assertions 
are valid. First, for each function f = 8, N*, a, U*, U* we can find the corresponding 
sequence { f @"& uniformly converging on R+. For this purpose, we determine the 
elements f as the right-hand sides of the relevant representations (4) and (7) in which 
c* and s* are substituted by functions (U), i.e. we assume that at any m = 0, 1 ,  . . . and 
X E R +  

( 2 W  

(26b) 

( 2 6 ~ )  

( 2 6 4  

P ) ( x ,  4) = arctan (s+cm)(x, q)/c+('"'(x. 9)) 
2 w 2  

N"("(x,q) = ( ( c + ( m ) ( x , q ) ) 2 + ( s + ( m ) ( x , q ) )  ) 
a"'(x, 4 )  = -c+(m)(x, q)c-")(x, q )  - s+(m) (x ,q )s - (m) (x ,  q )  

Uicm)(x ,  q )  = c*")(x ,q)F(p ,  q) + s*('")(x, q ) G ( p ,  q )  



3312 V V Pupyshev 

Second, the functions 6O, N’“), LYO, U*@) and U*(’) thus determined have an apparent 
physical meaning: they are the relevant functions (4) and (7) in the case when the potential 
V is cut off at the point x = b. 

Using (4), (7), (16), (25), (26) and the identities f = f“) we estimate from above the 
differences (‘“)f f - f(”) for the functions f = $, s*: 

x cosh u(b, x)u”(b, x ) /  I-(% + 1) m = 0, 1, . . . (274 

and then for all the functions f = 6, N”, U, U*, U*. Then we show that these estimates 
have the form of the asymptotic inequalities [I61 

I ( ” f r ( ~ ,  q)I 6 e(x - b)O (uun*.s(-m)(b, x ) / r ( 2 m  t 1)) f f U* 
W b )  

if b and I are fixed and m + 00, or if m is fixed and q(b, x )  4 0 at Vx 3 b. The validity 
of estimates (27b) in the first case implies that OUT perturbation theory is mathematically 
correct under condition (15). The validity of these estimates in the second case allows us 
to use this theory for constructing the asymptotics of functions (4) and (7) in the region 
x > b in two limits: 1 + 03 at fixed q and q 4 0 at fixed 1. To show how to do that, we 
first have to analyse (15) and (27). 

2.5. Analysis of perturbation theory 

At x 3 b functions (2) and (16c) monotonically vanish if I is fixed and b increases: 

I“%:(x,q)l e O(u”+o(-m)(b,cu)/r(2m t 1)) 

l ~ ( b , X ) , ~ ~ ( b , x ) + O  b - t w  (28) 

or, if b is fixed and 1 increases, 

Zi(b, x) ,  vi(b, X )  = O(l-”’) I + 00. (29) 

Therefore, inequality (15) is certainly valid in two cases. First, at any fixed 1 and any b 
exceeding the root b,,in(l) of the equation 

and second, at any fixed b and any 1 exceeding the root 

of the equation Itmo(b)(br 03) = (ln3)/2. 
Thus. our perturbation theory can certainly be applied at x 3 b > 0 in the two above- 

mentioned cases. Due to (28) and (29) the estimates (27), characterizing the efficiency of 
this theory, are improved in the first case with increasing b and in the second case with 
increasing 1. 
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The qualitative explanation of these conclusions is the following. Due to (2). in the 
region x b > 0 the potential V is 'screened' [3] (IV(x)l < I ( 1  + 1)x-') by the repulsive 
centrifugal barrier. Hence, V is a perturbation if 1 is fixed and b is large (b  > b d n ( l ) )  or, 
if b is fixed and I is large (1  > Idn(b)). Obviously, the degree of screening is improved in 
the first case with increasing b and in the second case with increasing I .  

At sufficiently large I the centrifugal barrier can screen the potential, satisfying (2).  
everywhere, i.e. at all x E I[$+. Therefore, it  is interesting to generalize the perturbation 
theory to the case b = 0. To this end, we reconsider the proof of the theorem and al1,the 
subsequent constructions, first for the functions with the sign '+' and then for the functions 
with the sign '-'. 

Let b = 0 and (15) be fulfilled. Then, due to (5b) and (I]), y?""(O, q) = &I, i = 1,2. 
Therefore, the representations (14b) of yTCm) are simplified: 

y""'(x, q) = C ( x ~ f : ( o ,  q)P;-'(o, q)Ie( t ) )  
m 

m = 0, I , .  . . (32) 
p=O 

and, what is more important, contain only limited operators. Using (32) and assuming 
w = 1, one can easily be convinced of the following. 

For y:, y:(m) and @"y? the theorem remains valid. Hence, for all of the subsequent 
assertions concerning the functions c+, s+, 6, N*, U+ and U+, which have representations 
(4). (7) and (10) that do not contain y; and y;, are also valid. 

Then, the relevant formulae (25) and (26) are essentially simplified. For instance, at 
m = 0, 1, they are reduced to the relations 

(33) 

(34a) 

(346) 

(34c) 

( 3 4 4  

( 3 4 4  

c+(o) = Ni(0) ~ 1 

c+(')(x, 4 )  = exp(~3(0,x, 4))  

W x , q )  = a ~ c m  exp( 2 ~ 3 ( 0 , x ,  4)) ( ~ ~ l i Z ( ~ . q ) ~ e ( t ) ) )  

~ * ( ' ) ( x ,  q) = ( c o s ~ ( " ( ~ ,  q)exp(-&(O, x ,  4))) 

,+m, = J(0) ~ 0 U+(O) = u+(o) ~ F 

s+(%, 4)  = (x14(0, ~ ) i e ( t ) ) P ) ( x ,  4) 

*I 
( -  

U+'') =exp (B3(OIx, 4)) (F(p,  n) + tana(I)(x,q)G(p. n)) 
u+( ' ) (x ,  q) = cosS(l)(00, q)exp(&(x, 00, q ) )  (F(P, a) + tan6(')(x, q ) G ( p ,  7)). 

Finally, the estimates (27a) for ("')c+ and ("')s+ are also simplified. For instance, at 
m = 0.1, they have the fom' of 

I(""c*(x,q)l (1/2)exp(Bs(O,x,q)6,.0) ~z(O,x)coshu(O,x) 

I(")s+(x, q)1 < exp (-B,(O, x ,  q)6,,,0) ~~"(0, x )  coshu(0, x ) / ( l  + 56,,1). 
(35) 

Now if we let b + 0 then (15) is valid at b = 0. In virtue of (5b) and (11) the 
representations (14) for yc:(m) always (even at b = 0) contain the mappings PIS, and 
f f&9 of the theta function. The estimates (20), (22) and (23) of these mappings become 
meaningless at b = 0 since. w ( b , x . q )  + CO if b + 0. Moreover, it follows from (I2c) 
and (12d) that I(xl@,(b,q)l@(t))l  + CO when b + 0 and VGZ Ct L~o.xo,. 

From the points already made, the following construction seems to be reasonable. First, 
by the method described in subsection 2.1 we find c- and s- in the interval [ O , x o ] .  Then, 
we apply our perturbation theory in the half-interval [b, CO). Under such a construction it 
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is assumed in (10H26) that b = xo, the functions c-('"), s-('"), a('"), U-(m),  U-('") h ave 
correct asymptotics at zero and the relevant estimates (27) are valid for Vx 2 0. 

So, if (15) is valid at b = 0, then the pcrturbation theory can be used to approximate the 
functions c+, s+, 6, NI, U+ and U+ on the whole of R+ and to approximate the functions 
c-, s-, a, U-, and U- at x > xo. Due to (30) and (31) the above condition is fulfilled if 1 
is fixed and V is such that b,,,in(I) = 0 or if V is an arbitrary (satisfying (2)) potential and 
I z &(O). In these cases formulae (32)-(35) hold. 

Now, we study the non-Coulomb limit R + CO. As V ( x )  = R*?(xlRI) where 
? is the potential in the r-representation, integral (2)  and, consequently, condition (15) 
are independent on R. This can be verified by expressing them in the variable r. The 
key estimates (17) are also independent on R and remain valid [15,17] as R -+ CO 

when 4 ( p .  q )  --f j r ( p )  and G I @ ,  7) --t -nf(p) [121. Due to these facts, all the above 
mentioned conclusions, relations and formulae also remain valid in the non-Coulomb limit 
(V, = 0. R = CO) if, beginning from (la). one assumes q = 0, x = p z kr, q z 1, 
f i ( p ,  q )  = j , (x ) ,  Gl(p, q)  = -nl(x)  and one bears in mind that now V ( x )  = k - z P ( x / k ) ,  

The next interesting limit is R + Of. In this case the repulsive Coulomb barrier 
increases (V, + 00) and screens the potential V ,  first at x 0. 
Unfortunately, we did not succeed in taking this effect into account within the perturbation 
theory. Indeed, estimates (27), characterizing its eficiency, are not improved as R + O+ 
because they contain only the function U which is independent of R. 

Completing the analysis of the relations (15) and (27). it is useful to discuss the quality 
of estimates (27) and to show how they may be improved. According to the proof of 
the theorem, condition (15). definition (16c) of the function U and the smcture of the 
relations (27) are generated by the key estimates (17). The latter do not contain R as a 
parameter and are rather rough estimates, especially as x + 0 and x + CO when [I21 
f i  = 0 (x"+"qCI(q)) and f i ,  GI = O(1). What is more important is that estimates (17) do 
not contain the Coulomb banier factor C/(q) = (Zq)'lr(l+ 1 + i/Zq)lexp(-z/4kR) and, 
therefore, they do not take into account the dependence Cl(q) + CO as R + O+ reflecting 
the effect of Coulomb screening. Clearly, estimates (27) do not describe this dependence 
and are also rather rough. Hence, for each function (4) or (7) the approximation f N f (m) 
is, indeed, more accurate than the corresponding estimate that (27) gives. 

Obviously, all of these estimates can be fundamentally improved. For this purpose, 
instead of (17), one should use less universal but more accurate estimates that take into 
account the structure of F and G in a proper way. For instance, as 4 + 0 one can use 
the known asymptotical (Iql -+ CO) representations (w-asymptotics [16], Bessel-Clifford 
series 1181 and so on) and at 7 = 0 one can use the estimates 131 j&) = 0 (( 1 4- x-')-/-') 

b z 0 and then Vx 

and n l ( ~ )  = 0 ( ( 1  +x-')'). 

3. Examples of application of perturbation theory 

3.1. Control and improvement of the accuracy of the calcuLations 

In practice. problems (5) are solved numerically not on the whole semi-axis IIB' but on a 
certain finite interval [O. b] ,  i.e. the approximation V ( x )  EZ 0 at x 2 b is used. This is the 
zeroth approximation for our theory. Using this theory one can evaluate the accuracy of 
this approximation @)f, if necessary, one can construct any function f of (4) or (7) more 
exactly by formulae (25) and (26) with m = 1, and one can choose b so that the found 
function f'". m = 0. I should approximate the sought one with the given absolute accuracy 
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E. Such a choice is made in the usual way: the function " ) Q ( b , x ,  q ) .  maximizing I(m) f 1, 
is calculated by formulae (27) and compared with E at x > b; if (")Q(b, x , q )  z E,  then 
the value of b should be enlarged until the inverse equality is satisfied. 

In a special case, when (15) is valid at b = 0, the numerical solution of equations (5) is 
not required and, therefore, perturbation theory becomes an effective method for analytical 
investigation of the initial problem ( 1 ) .  In this case, the construction of the functions f""), 
m = 0, 1, . . , approximating functions (4) or (7)  Vx > 0 is reduced to the calculation of 
integrals of multiplicity not higher than m + 1 ,  and the accuracy of approximation f Y f (") 

is controlled by the estimates (27) in which b = 0 is assumed. The formulae (33) and (34). 
determining the zeroth and first approximations of c+, st, 6, N*, U+ and U+, are especially 
simple. This allows us to derive the new estimates ( 3 6 x 4 2 ) .  

3.2. Estimates for the normalization factor Nt 

Let b = 0 and (15) be fulfilled. Then, using (7b), ( 3 3 x 3 5 )  and equalities c+ = 1 +" c+ 
and s+ =(*) s+, we obtain for Nc(q)  the lower bound 

N + ( q )  > ( 1  +uZ(O,oo)coshu(O,~)( l+coshu(O,w)(l  + , ~ ~ ( 0 , 0 0 ) / 4 ) ) ) - ~ / ~ .  

Within the first approximation the more accurate lower and upper estimates 

(36) 

N+")(q) > exp ( - B ~ ( o ,  00, q ) )  ( 1  + exp ( - 4 ~ 3 ( 0 , 0 0 , q ) )  u*(o, 00))-"' ( 3 7 4  

~ + ' " ( q )  c exp (-&(0.00. 4 ) )  (37b) 

are valid. To prove (37a) and (37b) we started from (26b) and (344  respectively, and then 
we took into account (34a) and (20). 

By using (7b), (33), ( 3 4 4  and (39) we obtain the asymptotic estimates 

IN;+(q) - II < o(l-'/z) IN:"'(q)/N:(q) - 11 < O(1P)  (38) 

determining the behaviour of N:(q) when q is fixed and 1 + 00. 

Our bounds (36)-(38) allow one to estimate U: at q x  < 1 when, according to (4) 
and (5b), U: zz NT(q)C[(q)qx'+'. These simple estimates are very useful in an analysis of 
many of the approximate relations (for example, Deer  et a1 [19]) containing U: as qx --f 0. 

3.3. Estimates for the scattering phase and amplitude as 1 -t 00 

Let 1 + 00 and q be fixed. Then, as was mentioned in subsection 2.5, at any 1 exceeding 
Zdn(0) the function fi = e:, s:, &, N: can be approximated on the whole semi-axis 
x > b = 0 by the function h(m) of (33) or (34). By virtue of (29) the accuracy of an 
approximation like this improves with increasing 1. For instance, estimates (35) take the 
form of the asymptotic (I + 00) inequalities 

l")c:(x, q)1 < o(1-I) l("s:(x, q)l < 0(1-"- ' /~)  m = 0. I. (39) 

Applying (7a), (33). (34b) and (39) we obtain the asymptotic estimates 
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specifying the behaviour of the scattering phase in  the limit of large I .  

q-' sin&(q) exp(i&(q)), and our first approximation, 
Using (40). the usual definition of the scattering amplitude [1,3], Al(q) = 

we prove that at fixed q 

IA"'(q)/Ai(q) - 11 < O([-') 1 + W. (42) 

The estimates (40) and (42) mean that with increasing I the phase and amplitude of scattering 
tend to zero as the functions Sf) and AI') respectively. The decrease of the scattering 
amplitude as I + co can be qualitatively explained by the effect of screening; its shict 
mathematical proof was first given by Klarsfeld 1151. Comparing his result 

lAf(q)/AI(q) - 11 = 0 ( Z - l D )  I -+ 03 

with our estimate (42) we see that at large I the functions 6j') and AI" approximate the 
phase and amplitude of scattering more exactly than the functions 8: and A/ given by the 
standard Bom formulae 131 

m 

(43) 

We stress that 8;') + S,! and A)') + Af as B,J(O, x ,  q )  + 0 for Vx > 0. This can be 
verified by assuming B3.1 --f 0 in ( 1 2 ) .  (124, (34b) and (41). 

3.4. Consrruction of low-energy represenrntions 

As is already known [1,8], the low-energy scattering of two particles is mainly determined 
by the behaviour of the potential tail. Therefore, at q << 1 it is necessary [20,21] to 
take into account the long-range potential in the whole region of large distances; this 
is a rather difficult task. Its solution by numerical integration of the problem (1) or 
even (5) i s  an inefficient way [21] in comparison with the construction of low-energy 
representations [8,22]. These representations for the functions (4) and (7) can be abtained 
by using the known asymptotics of the Coulomb functions 112,181 as 111 --+ co and our 
perturbation theory. We clarify this for the case V, 0. The key idea of the construction 
proposed below is to choose b so that at x < b one could use the results of a previous 
paper [22], and at x z b the results of the present work. 

tans, B (4 )  = - q - ' L  V(t)F;L(p,~)dt-qAf(q). 

Let q + 0, I be fixed and by definition 

b = x: (q/q)" (1 t (1 + I ( I  + l)/q)'/*)' 2/3 c p c 1 (44) 

where x, is the Coulomb turning point [l, 161. Then, 6 << x, and the conditions q + 0 
and x < x, hold in the interval [O,b] and allow one to change F, G and c t , s t  by the 
corresponding finite sums of the Bessel-Clifford series [IS] and the expansions 
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derived in [22], where the expansions of the functions (4b) and (7) as q --t 0 and x < b << x, 
have also been constructed. By definition (44) b + 00 as q -+ 0. therefore, for any potential 
(satisfying (2))  condition (15) is fulfilled at small enough q . At this q and x 2 b each of 
the functions (4) and (7) can be approximated by the function f(") of (26). To construct the 
asymptotic (q --f 0) estimates of accuracy I m )  j of such an approximation one should, first, 
consistently determine the behaviour of the functions I ,  v ,  w ,  y;(-') and D,?m as q --f 0 
and x b, then, by formulae (27a), obtain asymptotic estimates for (m)c+ and ('"is+ and 
finally, using (4). (7) and (26). construct asymptotic estimates for all other j .  As an 
example, we estimate a relative accuracy of the first approximation for the scattering phase 
generated by the potential 

v(x) Y ax-d d > 2  x>>1. (46) 

Let x 2 b, q + 0 and 1 be fixed so that 2q1(l t I )  << 1. Due to (44), b = O(q-'p), 
hence, for potential (46) inequality (15) is valid at 

1/2p(d-2) q -= qaUW = (((U + 1) /2d/2  (d - 2)(ln3)/21aI) 

and the functions ( 2 )  and (16c) are such that 

I @ ,  x ) ,  u(b, x )  = O(q ZP(d-2)).  (47) 

The estimate [12] IC@, q)l < O(q-'l6), allows us to obtain from (164 

w(e, x , q )  < 0 ( ~ 2 ~ - 4 / 3 ) .  (48) 

Now, with the help of ( I  1). (12b) and (45). we show that 

(49) +(-I1 +(-I) c+(q,b) ,Y ,  ( 4 . X )  =0(1) s+(q,b) ,Y,  ( 4 . x )  =O(qC2(4) ) .  

Relations (47)-(49) give us the capability to estimate functions (16b) and then to obtain the 
asymptotic form of inequalities (27a): 

I (")c+(x,  411 < o (q4 (d -2 ) (m+e( -m) )p /  r(2m + 2q-m)  + 1 ) )  

I"'S+(X, q)I < 0 (4 4cd-2icm+1)p/r(2m + 2)) m = 0, 1, . . . . (50) 

Now, using (7a). (26a), (49) and (50). we prove the sought relation 

I tanJ(')(q)/tanJ(q) - 11 < o (q4Cd-*)P)  . (51) 

Let us, artificially, put B3 = 0 in (25). Then 6' of (26a) coincides with JB of (43). 
and (52) results in the estimate of the relative accuracy of the Born approximation 6 Y J8. 
This estimate is new and reproduces the more sought relation 8 = O(SB)  that was first 
established by Berger and Spruch [231. 
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4. Conclusion 

The main results of this paper are the following. 
We have given the complete construction and analysis of a perturbation theory for the 

one-dimensional scattering problem (1) with the rather general condition (2). For our theory 
we have established a sufficient condition (15), the range of applicability (b > bd"(1) or 
1 z IdO@) independently on whether V, < 0, V, > 0 or V, = 0) and maximum and explicit 
estimates (27) and (35) of the absolute accuracy I(")fl  of the approximation f 2: f@" for 
each function f investigated. We have indicated that these estimates can be improved if the 
structure of the Coulomb functions is taken into account in more detail. We have explained 
how the constructed theory can be applied in order to correctly take into account the potential 
V at x > b > 0 (in some cases, at all x > 0), to obtain estimates for the normalization 
factor N+ and to study problem (1) in the low-energy and large angular momentum limits. 
By estimates (40). (42) and (51) we have demonstrated that the first approximation of our 
perturbation theory is more exact than the standard Born approximation (43). Throughout 
this work we have paid special attention to a new method of constructing the irregular 
solution U;.  an explanation of the physical meaning of each auxiliary function, an analysis 
of various physically limiting cases, and a derivation of useful explicit and asymptotic error 
estimates. 
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